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A Stokes experiment for foams is proposed. It consists of a two-dimensional flow of a foam, confined
between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measure-
ments of the drag exerted by the flowing foam on the obstacle versus various separately controlled parameters:
flow rate, bubble volume, bulk viscosity, obstacle size, shape, and boundary conditions. We separate the drag
into two contributions: an elastic onesyield dragd at vanishing flow rate and a fluid onesviscous coefficientd
increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit
in particular a power-law dependence of the drag as a function of the bulk viscosity and the flow rate with two
different exponents. Moreover, we show that the drag decreases with bubble size and increases proportionally
to the obstacle size. We quantify the effect of shape through a dimensional drag coefficient, and we show that
the effect of boundary conditions is small.
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I. INTRODUCTION

Liquid foams, like colloids, emulsions, polymers, or sur-
factant solutions, are characterized by a complex mechanical
behavior. These systems, known as soft complex systems,
are multiphasic materials. Their constitutive entities are in
interaction, generating internal structures, which cause di-
verse rheological behaviorf1g. Liquid foams are convenient
model experimental systems for studying the interplay be-
tween structure and rheology, since their internal structure
can be easily visualised and manipulated.

Liquid foams are made of polyhedral gas bubbles sepa-
rated by thin liquid boundaries forming a connected network.
The liquid phase occupies a small fraction of the volume of
the foamsa few percent for a dry foamd. The deformations
and motions of liquid foams are very diverse: foams are elas-
tic, plastic, or viscous depending on the applied strain and
strain ratef2g. This behavior has been shown in rheological
experiments performed on three-dimensionals3Dd foams
f3–6g; models have been built to account for this diversity of
rheological behaviorf7–11g. However, the visualization of
the foam structure is technically difficult in 3Df12,13g, al-
though progresses have been made recentlyf14g. Moreover,
the drainage of the liquid phase due to gravity may occur in
3D, making the fluid fraction and therefore the rheological
moduli of the foam, as well as bubble sizesthrough coarsen-
ingd, inhomogeneousf15g.

For all these reasons, the mechanics of foams has been
studied in two dimensions, where direct visualization of the
structure is easier and no gravity-driven drainage occurs if
the system is horizontal. The system is then either a true 2D
systemsunlike bubble raftf18,19gd, like a Langmuir foam
f16,17g, or a quasi-2D system constituted by a monolayer of
bubbles, either confined between two horizontal transparent

platessHele-Shaw cellsf20–22g: incompressible foams; see
belowd or between the surface of the solution and an upper
horizontal transparent platef20,23g scompressible foams; see
belowd. The deformation and motion of individual cells have
been forced and studied in different flow geometries: simple
shearf18g, flow in a constriction or around an obstaclef22g,
and Couette flowf19,21g. Some authors have been particu-
larly interested in the dynamics of bubble rearrangements
during the flow: the spatial distribution of the rearrangements
f18,21g, the stress relaxation associated with the rearrange-
mentsf19g, the deformation profilef24g, and the averaged
velocity f21,22g. However, no mechanical measurement has
been performed in those last studies.

In this paper, we study the mechanics of a foam flowing in
relative displacement with respect to an obstacle, at a con-
stant velocity. In a Newtonian liquid at low Reynolds num-
ber, the force would vary linearly with the foam-obstacle
relative velocity, the proportionality factor being linked to
the liquid viscosity and the size of the obstacle. This experi-
ment gives information on the effective viscosity of a flow-
ing foam. Such a Stokes experiment was first performed in a
3D coarsening foam by Coxet al. f25g. Here, we measure the
force exerted by the quasi-2D foam on the obstacle, as a
function of the flow velocity, in a 2D geometry. A similar
experiment has been performed recently to investigate the
elastic regime of a 2D foam and measure the foam shear
modulusf17g. In the experiments presented here, the foam
flows permanently around the obstacle, and the stationary
regime is investigated. The system used is a monolayer of
soap bubbles confined between the surface of the solution
and a horizontal plate. This allows measuring accurately the
forces exerted on the obstaclesSec. II Bd and varying easily
the foam internal parameters such as the viscosity of the
solution, the bubble size, and the geometry of the obstacle.

The article is organized as follows. The experimental ma-
terials and methods are presented in Sec. II, and the results
are shown in Sec. III. These results are discussed in Sec. IV,
and conclusions are exposed in Sec. V.*Electronic address: graner@spectro.ujf-grenoble.fr
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II. MATERIALS AND METHODS

A. Foam production

The experimental setup is presented in Fig. 1sad. The ex-
periments are performed in a glass channel of 110 cm length,
10 cm width, and 10 cm depth. The soap solution is a solu-
tion of commercial dish-washing fluids1% in volumed in
purified water, with added glycerol when the viscosity needs
to be variedsSec. III Ad. We have measured the surface ten-
sion of two solutions with an apparatus based on the oscil-
lating bubble methodsIT Conceptd: g=26.1±0.1 mN m−1 for
a solution with glycerol, andg=24.24±0.04 mN m−1 for a
solution with 50% glycerol in mass. At the beginning of each
experiment, the channel is filled with the solution, with a gap
of thickness 3.50±0.05 mm between the liquid surface and
the coverslip. The foam is produced by blowing bubbles of
nitrogen in the solution, at one end of the channel, in a cham-
ber bounded by a barrier which allows a single monolayer of
bubbles to form. The continuous gas flow makes the foam
flow along the channel, between the surface of the solution
and the coverslip, until it reaches the open end of the chan-
nel, where bubbles pop in contact with the atmosphere.
Leaks are carefully avoided, so that the total amount of liq-
uid in the channel is constant during an experiment and for
each experiment. A typical image of the flowing foam ob-
served from above is displayed in Fig. 2.

B. Obstacle and force measurements

The obstacle stands in the middle of the channel. It is a
buoyant mobile plastic cylinder connected to a fixed base by
a soft glass fiber. The bottom extremity of the fiber is rigidly
fixed. Its top extremity simply passes through a hole drilled
in the bottom of the cylinderfFig. 1sbdg. Therefore, the fiber
can slide inside the horizontally moving cylinder, without
applying any undesirable vertical force. Moreover, the fiber

is lubricated by the liquid, which avoids solid friction against
the cylinder.

The horizontal forceF exerted by the foam on the ob-
stacle tends to pull it streamwise; it is balanced by the hori-
zontal drawback forceFd from the elastic fiber, which de-
flection is designed byX. The calculation of this force is
classical in the theory of elasticityf26g; since the deflection
of the fiber is too large to use linear Hooke’s law, we use the
following one:

Fd = −
pED4

64L2 F3
X

L
−

81

35
SX

L
D3

+
29646

13475
SX

L
D5

+ OSX

L
D7G ,

s1d

whereD=240mm is the fiber diameter,L its vertical length,
andE its shear modulus. This expansion gives a precision of
0.3% over the force. The derivation of formulas1d is detailed
in the Appendix. The fiber has been calibrated by measuring
its deflection under its own weight, giving the value of the
parameterED4=s2.21±0.02d310−4 Pa m4. This value is
compatible with typical values of the Young modulus of
glass: 6–731010 Pa. We use two different fibers of vertical
lengths:L=34.8±0.1 mm andL=42.4±0.1 mm, depending
on the magnitude of the force to measure. We have checked
that for given experimental conditions, the same force mea-
sured with both fibers yields the same resultsdata not
shownd. The displacement is measured by tracking the posi-
tion of the obstacle with a charge-coupled-devicesCCDd
camera placed above the channel: the actual position of the
obstacle is given by the coordinates of its center, obtained by
image analysis. The position of the center of the obstacle is
known with a precision of 0.02 mm, much lower than the

FIG. 1. sad Experimental setup. The arrows indicate the flow of
gas and foam.sbd Detailed sketch of the obstacle.

FIG. 2. Photo of foam flowing from left to right around a cir-
cular obstacle of diameter 30 mm. The bubble size is 16.0 mm2

snote the monodispersity of the foamd, and the flow rate is
174 ml min−1. The walls of the channelswidth 10 cmd are visible at
the top and bottom of the picture. The stretching and shearing of
bubbles due to the presence of the obstacle is clearly visible around
the obstacle. The surface of the observed field is 15.4310.2 cm2,
and 1 pixel side equals 0.20 mm. Films are available at http://www-
lsp/link/mousses-films.htm at low s17 ml/mind, moderate
s112 ml/mind, and highs515 ml/mind flow rates for this obstacle
and bubble area.
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typical displacements0.5–1 cmd. When the obstacle has
reached a stationary position under flow, the drawback force
exactly compensates the force exerted by the foam, which is
then directly deduced from the measured displacement.

The obstacle is in contact with the coverslip. This is nec-
essary for the foam to flow around the obstacle and not
above it, but this may induce friction. Nevertheless, in the
setup presented here, the obstacle is in contact with a single
plate; this reduces the friction in comparison with an experi-
ment performed in a Hele-Shaw cell, where the foam is con-
fined between two plates. Furthermore, the obstacle has an
enclosed cavity closed by a watertight screwfFig. 1sbdg,
which enables one to tune its buoyancy such that the contact
force with the top plate is minimal. In the presence of the
foam, the obstacle is in contact with the top plate through a
capillary bridge, avoiding solid friction. We check for each
experiment that the obstacle is not stuck: its position fluctu-
ates under the slight flow heterogeneities, and results pre-
sented below average the position of the obstacle over 50
successive images with an interval of two seconds. Viscous
friction between the obstacle and the coverslip cannot be
eliminated, but it only influences transients, which are not
considered in this paper: each measurement is performed in a
stationary regime. Reversibility and reproducibility tests give
an upper bound for the force measurement errors: 0.2 mN, to
be compared to the typical forces, of the order of 5 mN.

As shown by Fig. 1sbd, a part of the obstacle is immersed
in the subphase, which may be drawn by the flowing foam.
This flowing subphase exerts an additional force on the ob-
stacle, which is negligible as shown by the following evalu-
ation. The total height of the obstacle is 23 mm, so the im-
mersed height ish.19.5 mm because the foam thickness
remains close to the initial thickness of 3.5 mm between the
solution and the coverslip. Therefore, a generous upper
bound of the drag exerted by the subphase would be obtained
by assuming that the subphase flows at the same velocityV
that the foam. The diameter of the obstacle being 2R
=30 mm and the width of the channel 2H=10 cm, the drag
exerted by the flowing subphase of dynamic viscosityh
would equalf27g

Fsubphase.
4phhV

ln H/R− 0.91
. s2d

By taking the highest foam velocity reached in the experi-
ments,V=3 cm s−1, and the highest dynamic viscosity used,
h=9310−3 Pa s, the upper bound of the force would be then
evaluated toFsubphase=0.2 mN, which is comparable to the
other sources of error and much lower than the typical forces
exerted by the foam on the obstacle.

C. Control parameters

A first control parameter is the nitrogen flow rateQ,
which is adjusted using an electronic controllersBrooks In-
strument B.V.d driven by a homemade software. The range of
available flow rate runs on more than three decades, from
1 to 2000 ml min−1, with a precision of 0.1 ml min−1. An-
other control parameter is the bubble volume. It is indirectly
determined by measuring the surface density of bubbles

against the coverslip thanks to image analysis, using NIH
Image software. Since the mean foam thickness is fixed by
the total amount of liquid in the channel, which is carefully
kept constant, there is a unique relation between the bubble
volume and the mean surface density. Instead of this surface
density, we will refer throughout this paper to its inverse,
which we shall call the mean bubble area. This parameter
slightly differs from the bubble area one can measure di-
rectly on an image, because it includes the water contained in
the films and plateau borders surrounding bubbles. In our
setup, contrary to Hele-Shaw cells, the depth of the bubbles
is free to adjust to pressure variations; this entails an effec-
tive compressibility of the flow and local variations of
bubble area near the obstacle, as we shall see latersSec.
IV Cd. The surface density is measured at the left extremity
of the observed field, where the influence of the obstacle is
not significantsFig. 12d.

For a given injector, the bubble volume increases with the
gas flow rate. To control these two parameters separately, we
blow the gas through one to six tubessor needlesd of same
diameter simultaneously, keeping constant the flow rate per
tube, hence the bubble volume. Furthermore, the diameter of
these injectors can be varied, which changes the flow rate per
tube for the same bubble area; hence, for a given bubble
volume, typically ten different values of flow rate are avail-
able sfrom 5 to 13 in the following datad, with greatest flow
rate at least 20 times greater than the lowest one. In this
paper, we always produce monodisperse foams: the bubble
area disorder, measured as the ratio of the standard deviation
with the mean value of the bubble area distribution, is lower
than 5%. Six different bubble areas were used: 12.1, 16.0,
20.0, 25.7, 31.7, and 39.3 mm2, chosen with a relative pre-
cision of 3%. The study of smaller bubbles would be prob-
lematic, since a transition from bubble monolayer to
multilayer occurs at low bubble width/height ratiof28g. At
the other extremity, we cannot make a monodisperse foam
with larger bubbles.

Another tunable parameter is the viscosity of the solution,
which we will call bulk viscosity throughout the text. We
control it by adding glycerol to the initial soap solution. We
have used five different solutions, with 0%, 20%, 30%, 40%,
and 50% glycerol in mass. The respective kinematic viscosi-
ties n, measured with a capillary viscometersSchott-Geräted
at room temperature, are equal to 1.06, 1.6, 2.3, 3.8, and
9.3 mm2 s−1. The variation of viscosity due to the variation
of room temperature is lower than 4%.

Different obstacles have been usedsFig. 3d. To change the
obstacle, additional profiles are fixed on the previously de-
scribed cylinder; for each obstacle, the apparent density is
tuned to avoid solid frictionsSec. II Bd. Two different cylin-
ders of diameter 30.0fFig. 3sadg and 48.0 mmfFig. 3sbdg are
used to study the influence of size. Boundary conditions on
the obstacle are investigated using a cogwheel of diameter
43.5 mm, with circular cogs of diameter 4.0 mmfFig. 3scdg:
whereas flowing foam slips along any smooth obstacle, the
cogs trap the first layer of bubbles surrounding the cogwheel.
A square obstacle, of side 33.9 mmfFig. 3sddg, is used to
study orientation effects. Furthermore, we made an airfoil
profile fFig. 3sedg to study possible streamlining. It is a stan-
dard NACA 0025 profile, which means that it is not cam-
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bered and that its maximal thicknesss12.6 mmd equals 25%
of its total lengths50.2 mmd. This profile was homemade
using a numerical milling machinesDeckel-Mahod; its math-
ematical expression, parametrized by the anglet running
from −p to p, writes xstd=25.1 cost, ystd=4.83s1
+costdsin t, where the lengths are expressed in millimeters.

III. RESULTS

A. Influence of the bulk viscosity

We study the variation of the drag versus the flow rate and
the bulk viscosity, for the five different viscosities indicated
in Sec. II C. All these measurements are performed at a fixed
bubble area of 20 mm2, and we use a circular obstacle of
diameter 30 mmsFig. 3d.

We observe two general featuressFig. 4d, independent of
the value of the bulk viscosity: the drag does not tend to zero
at vanishing flow rate, and it increases with flow rate. The
first observation is a signature of the solidlike properties of
the foam. The second feature is related to the fluidlike prop-

erties of the foam. The data are well fitted by a linear law
sFig. 5d

F = F0 + mQ. s3d

We callF0 the yield drag, as a reference to the yield proper-
ties of the foam, and the slopem the viscous coefficient,
since we can dimensionally deduce fromm an effective 3D
viscosity m for the foam:m<mS/R, whereS is the cross
section of the foam andR is the typical size of the obstacle.
Yield drag versus bulk viscosity is plotted in Fig. 5sad and
viscous coefficient versus bulk viscosity in Fig. 5sbd.

FIG. 3. Top views of the five obstacles, with dimensions in
millimeters.

FIG. 4. Drag vs flow rate, for bulk viscosity equal to 1.06sPd,
1.6 shd, 2.3 sld, 3.8 snd, and 9.3 mm2 s−1 s.d. The straight lines
are linear fits of the data. The bubble area is 20 mm2 and the ob-
stacle is a circle of diameter 30 mm.

FIG. 5. Results from fits to Fig. 4.sad Yield drag vs the bulk
viscosity ssemilogarithmic scaled and sbd viscous coefficient vs the
bulk viscosityslinear scaled. Inset: log-log plot. All error bars indi-
cate the incertitude on the fit parameter arising from statistical dis-
persion of the data. The straight line is the linear fit: its slope is
0.77±0.05.
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Figure 5sad shows that the yield drag is essentially inde-
pendant of the bulk viscosity. This was expected, because
yield drag is only related to the yield properties of the foam,
which depend on surface tension and bubble sizef29g. The
slight decrease with bulk viscosity is due to the slight de-
crease of the surface tension with the concentration of glyc-
erol: between the solution without gylcerol and the one with
50% glycerol in the mass, the yield drag decreases of
13±7%, whereas the surface tension decreases of 7±1%.
This is also fully compatible with the slight decrease of the
surface tension for pure water-glycerol mixturess6% in the
studied range of concentrationf30gd.

Figure 5sbd shows that the viscous coefficient increases
with the bulk viscosity. The data can be fitted by a power law
finset of Fig. 5sbdg, which yields the following dependence
of viscous coefficient on bulk viscosity:m~n0.77±0.05, the
error bar being obtained by the statistical dispersion of the
data in the inset of Fig. 5sbd.

B. Influence of the bubble area

We now turn to the study of drag versus flow rate and
bubble area. All the measurements are done without adding
glycerol in the solution, at a constant viscosity of
1.06 mm2/s. The obstacle is a cylinder of radius 30 mm. We
study the six bubble areas indicated in Sec. II C, from
12.1 mm2 to 39.3 mm2.

We find again the signature of the viscoelastic properties
of the foamsFig. 6d, with a nonzero yield drag and an in-
crease of drag versus flow rate. We perform again a linear fit
s3d, despite a slight nonaffine variation for 39.3 mm2, and get
the yield drag and the viscous coefficient, plotted versus
bubble area in Fig. 7.

Figure 7sad evidences that the yield drag is a decreasing
function of the bubble area. This is coherent with the fact
that both quantities used to describe the solid properties of
the foam—its shear modulus and yield stress—are also de-
creasing functions of the bubble sizef3,4,31g. Figure 7sbd
shows that the viscous coefficient is also a decreasing func-

tion of bubble area, except for the last point. The data will be
discussed in more detail in Sec. IV C.

C. Influence of the obstacle geometry

We now study a third control parameter, the obstacle ge-
ometry, using the five obstacles described in Sec. II C. As in
the previous section, a solution of viscosity of 1.06 mm2 s−1

is used. A bubble area of 16.0 mm2 was chosen to ensure an
optimal trapping of the bubbles in the cogs of the cogwheel.
We focus successively on the influence of orientation, size,
shape, and boundary conditions of the obstacles.

1. Orientation

Because of their symmetry, the cylinders and cogwheel do
not display any orientation effect. We thus focus on the in-

FIG. 6. Drag vs flow rate, for bubble area equal to 12.1sPd,
16.0 shd, 20.0 sld, 25.7 snd, 31.7 s.d, and 39.3 mm2 s3d. The
straight lines are linear fits of the data. The bulk viscosity is
1.06 mm2 s−1 and the obstacle is a circle of diameter 30 mm.

FIG. 7. Results from fits to Fig. 6.sad Yield drag vs bubble area.
The curve is an evaluation of the elastic contribution to the drag:
see Sec. IV C.sbd Viscous coefficient vs bubble area.
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fluence of the orientation relative to the flow direction of the
square on the drag measurements.

We have checked that for the square obstacle, any given
orientation is stable. More precisely, orientation drifts under
90 min are always less than 5°sdata not shownd, although it
is a much longer duration than what is required for the mea-
surements. We have studied the variation of drag versus flow
rate for three orientations of the square between a side and
the flow direction: 0°, 22.5°, and 45°. Figure 8 shows that the
drag does not depend significantly on the orientation: hence-
forth, drag measurements on the obstacle will be averaged
over these three orientations.

Contrary to the circle, the airfoil only possesses two stable
orientations when its plane of symmetry is parallel to the
flow direction. The more stable configuration is obtained
when foam flows from the rounded leading edge to the sharp
trailing edge, which is the usual configuration in aerodynam-
ics.

2. Size, shape, and boundary conditions

Measurements of drag versus flow rate for the five differ-
ent obstacles are displayed in Fig. 9. Here again, all data are
well linearly fitted, and as expected, the drag increases with
the size of the obstacle. A more quantitative comparison of
the obstacles is not straightforward, since not only their size,
but also their shape and boundary conditions, vary. To inves-
tigate the role of all these parameters, we report the viscous
coefficient versus the yield drag for the five obstacles and do
a linear fit passing through zero of all the datasFig. 10d. This
enables us to compare the respective magnitude of elastic
and viscous contribution to the drag and to define an effec-
tive dragFeff as the orthogonal projection of the data under
linear fit: Feff=sm+AF0d /2A, where A=s1.81±0.08d
310−3 min ml−1 is the slope of the linear fitting line. We also
define a dimensional drag coefficient, is units of mN mm−1,
as the ratio of the effective drag and the transverse length
sorthogonal to the flowd, in analogy with the dimensionless
drag coefficient usually defined in aerodynamics, propor-
tional to the drag and inversely proportional to the cross
section and the velocity of the flowf32g. The values of vis-
cous coefficient, yield drag, their ratio, and the dimensional
drag coefficient are displayed in Table I, and the values for
the dimensional drag coefficient are displayed as histograms
in Fig. 11.

IV. DISCUSSION

A. Comparison of our measurements with existing work

To our knowledge, our work is the first to provide system-
atic measurements of the drag exerted by a flowing foam in
a channel around an obstacle. This is to compare to the simu-
lations of Zisis and Mitsoulisf33,34g, who computed the
drag exerted by a flowing Bingham plastic past a cylinder
similar in geometry to our circle, for different values of ob-
stacle diameters. A Bingham plastic is characterized by its
yield stressty and its plastic viscositym, and it follows the

FIG. 8. Drag on the square obstacle vs flow rate, for orientation
equal to 0 sPd, 22.5 shd, and 45 sLd. The bulk viscosity is
1.06 mm2 s−1 and the bubble size is 16 mm2.

FIG. 9. Drag vs flow rate, for the cylinder of diameter 30.0 mm
sPd and 48.0 mmshd, the cogwheelsld, the squaresnd and the
airfoil s.d. The straight lines are linear fits of the data. The bulk
viscosity is 1.06 mm2 s−1 and the bubble area is 16 mm2.

FIG. 10. Viscous coefficient vs yield drag for the five obstacles,
whose photos are sketched near the corresponding data. The straight
line is the linear fit passing through zero of the data.
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constitutive equationt=ty+mġ for utu.ty and ġ=0 for utu
,ty, wheret is the shear stress andġ the applied strain. To
summarize, Zisis and Mitsoulis show that the drag exerted
by a flowing Bingham plastic around a cylinder strongly de-
pends on the Bingham number Bn=2Rty/mV comparing
elastic and viscous contributions: at a given Bingham num-
ber of order unity, there is a crossover between a Newtonian-
like behavior of the dragsfor Bn!1d given by formulas2d
and an elastic-likesfor Bn@1d where drag does not signifi-
cantly depend on the velocity and is roughly proportional to
the cylinder diameter. Though the validity of modeling foam
as a Bingham plastic is an open debate, this work provides
an interesting comparison to our experimental measure-
ments, for which we now evaluate the order of magnitude of
the Bingham number. The yield stress for a foam is of order
f29g 0.5g /a, with g=26.1 mN m−1 the surface tension and
a<Î16/s33/2/2d<2.5 mm the typical length of a bubble
edgeswe recall that the bubble area is 16.0 mm2 in the con-
sidered experiments and computea for a hexagonal bubbled,
so ty<5 Pa sto be rigorous, this overestimates the yield
stress for a wet foamd. Furthermore, we can deduce from the
value of the viscous coefficientfm=5310−6 N min ml−1 af-
ter Fig. 7sbdg a rough value of the plastic viscosity of the
foam: dimensional analysis yieldsm<mS/R whereS is the
cross section of the foam, so the Bingham number is written
Bn<2R2ty/mQ. The typical value of flow rate in our experi-
ments is 102 ml min−1; hence, the typical Bingham number
equals Bn<s230.015236d / s5310−63102d<5. Though
this is a very rough evaluation, it tends to show that in our

range of flow rates, the Bingham number remains of order
unity, and hence both elastic and fluid properties of the foam
are involved in the interaction with the obstacle to create the
drag. This corroborates the measurements of drag in Fig. 9
for which elastic and plastic contributions are of the same
order of magnitude.

B. Influence of the bulk viscosity

Our measurements of drag versus viscosityn and flow
rateQ yield the following scaling:

FsQ,nd = F0 + const3 n0.77±0.05Q s4d

ssee Sec. III Ad. To our knowledge, this is the first time that
such a scaling is proposed to quantify the dynamical regime
of flowing foams. Up to now, the dynamic regime of flowing
foam has been mainly investigated through the study of pres-
sure drop of foam confined in capillariesssee Ref.f35g and
references thereind, to model the behavior of foams in porous
media f36,37g. Since the seminal work of Brethertonf38g,
who studied the friction between an infinitely long bubble
and a solid wall, all these studies emphasize the role of the
capillary number Ca=hV/g, whereh is the dynamic bulk
viscosity, g its surface tension, andV the velocity of the
flowing foam. In the frame of our study, the capillary number
is proportional to the productnQ. It appears from our scaling
s4d that such a number is not sufficient to describe the dy-
namic regime of a flowing foam, because the exponents for
viscosity and flow rate differ significantly, and pressure drop
measurements confirm this observationf43g. Since the
velocity-dependent part of the drag is related to friction of
slipping bubbles along the obstacle, Bretherton’s theory is
therefore not sufficient to explain our measurements: addi-
tional physical ingredients are involved, like detailed bubble
shape and interfacial rheologyssurface elasticity and viscos-
ityd. This has not been investigated yet. Discrepancies from
Bretherton’s theory have already been widely pointed out
and studied for bubbles and foams in capillariesssee Ref.
f39g for a reviewd, but they still considered the capillary
number as the essential dimensionless parameter.

Let us notice that the scalings4d is a consequence of the
chosen fits3d. We are aware that some rheological studies
f3,4,6g show that storage and loss moduli of foams happen to
depend on the applied shear. This would lead to a behavior
like F=F0+mQa, the exponenta accounting either for shear
thinning sa,1d or shear thickeningsa.1d. If such effects
exist in our system, they are small enough to yield results
consistent witha=1 within our experimental accuracy. We

TABLE I. Yield dragF0, viscous coefficientm, ratiom/F0, and dimensional drag coefficientCx for each obstacle. The star symbol recalls
that the drag coefficient for the square depends on its orientation: the value of this coefficient expressed in mN mm−1 is 0.113±0.010 for an
orientation angle of 0°, 0.087±0.010 for an angle of 22.5°, and 0.080±0.005 for an angle of 45°.

Obstacle Cylinderx 30 mm Cylinderx 48 mm Cogwheel Square Airfoil

F0 smNd 2.5±0.1 4.6±0.1 4.3±0.1 4.0±0.2 0.5±0.1

m smN min l−1d 5.2±0.3 8.6±0.4 7.5±0.3 6.7±0.5 2.0±0.3

m/F0 smin l−1d 2.1±0.2 1.9±0.1 1.7±0.1 1.7±0.2 3.7±1.2

Cx smN mm−1d 0.089±0.006 0.098±0.006 0.097±0.005 p 0.066±0.013

FIG. 11. Dimensional drag coefficient for all obstacles. Since
the drag exerted on the square does not significantly depend on its
orientation whereas the cross length does, we give the drag coeffi-
cient for the three studied orientations of the square.
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will thus neglect shear thinning or shear thickening in our
further discussion.

C. Influence of the bubble area

1. Yield drag

The yield drag has two contributions: an elastic one aris-
ing from the elastic stresses in the network of bubbles and
another one arising from the anisotropic pressure distribution
in the bubbles surrounding the obstacle, as already shown in
preliminary simulations of our experimentsf40g.

As mentioned in Sec. II C, the depth of the bubbles ad-
justs to pressure variations. At constant bubble volume, there
is therefore a relation between bubble area and pressure that
we can use to evaluate the order of magnitude of the pressure
contribution to the yield drag. To establish this relation, we
assume that each bubble has the same volumeV0, which is
reasonable in our experiments. As a crude model, we treat
bubbles as cylinders of heighth and of horizontal areaA;
hence,V0=A0h0=Ah, where A0 and h0=3.5 mm refer to
mean values. We then assume that the pressureP inside the
bubbles equilibrates with the pressure in the bulk solution in
contact. At vanishing flow rate, this pressure is hydrostatic;
hence, we writeP−P0=rgh=rgA0h0/A, whereP0 is a con-
stant reference pressure andr=1.03103 kg/m3 is the volu-
metric mass of the solution. The pressure resultant on the
obstacle is then writtenFP=−eePdS, the integral being
taken on the contact surface between the obstacle and
bubbles. SinceP0 is constant,FP=−rgA0h0dS/A and dS
=hd,n, where d, is the length element on the boundary of
the obstacle andn the normal vector. Sinceh=A0h0/A, one
obtains

FP = − rgA0
2h0

2R d,n

A2 . s5d

This formula links the pressure contribution to yield drag to
the bubble area field.

We illustrate this measurement of pressure on one ex-
amplesFig. 12d. The bubble area field clearly shows the in-
fluence of the obstacle: bubbles are compressed upstream
and relax downstream, which qualitatively shows that the
pressure resultant acts in the same sense as elastic stress.
Computing formulas5d over the dashed contour in Fig. 12,
which is the closest contour to the obstacle where bubble
area is properly evaluable, yields an order of magnitude of
0.7 mN for FP, which is about 30% of the yield drag
f2.5 mN for the studied example; see Fig. 7sadg. The calcu-
lation of pressure for various bubble areas, as well as for
higher flow rates and other obstacles, is still in progress, but
the variation depicted in Fig. 12 does not vary qualitatively
and the pressure contribution to yield drag is not negligible.

Another difficulty arises from the variation of fluid frac-
tion with bubble area. In our setup, the monolayer of bubbles
is in contact with a reservoir of water, and the amount of
water in the Plateau borders and films between bubbles is
freely chosen by the system. Therefore, the mean fluid frac-
tion should vary with bubble area; detailed measurements of
this quantity are in progresssfirst rough estimate: about 9%d.

Furthermore, local effects such as dilatancyf41g could in-
crease the fluid fraction near the obstacle, because of the
shear experienced by the foam in this zone. This complicates
the interpretation of the evolution of yield drag with bubble
area, since many studies have shown that rheological prop-
erties of foams and emulsions depend on fluid fraction
f3,4,6g. However, we can check that the order of magnitude
of our measured yield drag agrees qualitatively with the
known value of the yield stress, of orderf29g 0.5g /a. Hence,
the order of magnitude of the elastic contribution to the yield
drag is Fel<pRh0g /a. For an hexagonal bubble,a
=Î2A/33/2=0.62ÎA; hence, Fel<5Rh0g /ÎA and, numeri-
cally, Fel<7/ÎA, with mN and mm2 as units for the force
and for the area. This elastic drag is plotted in Fig. 7; though
it is a very rough evaluation, we check that it is of the same
order of magnitude as the yield drag, but that it is not high
enough to fit the experimental results: this is again a signa-
ture of the significance of the pressure contribution.

2. Viscous coefficient

We now propose a qualitative argument to explain why
the viscous coefficient decreases with the bubble area, based
on the dissipation model of Cantat and co-workersf35g.
These authors state that dissipation in flowing foam is local-
ized in the Plateau borders between bubbles and walls.
Hence, the viscous coefficient should increase with the num-
ber of bubbles surrounding the obstacle and therefore should
decrease with the bubble area, which is actually seen in Fig.
7sbd. Note that this model does not capture the increase ob-
served for the bubble area of 39.3 mm2, but as seen in Fig. 6,
the drag does not depend affinely on the flow rate for this
area, and hence our linear fit is not relevant. As an additional
remark, friction in the foam should strongly depend on the
boundary conditions at the interfaces between films and

FIG. 12. Bubble area field around the circle of diameter 30 mm.
The observed zone is the same as Fig. 2. The solution viscosity is
1.06 mm2 s−1, and the mean bubble area isA0=16.0 mm2. The flow
rate 24 ml min−1 was chosen such that the velocity-dependent con-
tribution to the drag is negligiblessee Fig. 6d. Black zones represent
the obstacle and the channel walls and white zones the regions
where the bubble area is not measurable precisely. The darker the
color, the lower the bubble area hence the higher the pressure. The
area variation is significant, with a maximum relative variation of
18%. The pressure is maximal at the leading side of the circle and
minimal at its trailing sidesmaximal variation: 70 Pad.
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bubbles, and hence the viscous coefficient probably changes
with the surface rheology. It would thus be interesting to
investigate the influence of the surfactant used on the drag
measurements.

D. Influence of the obstacle geometry

1. Orientation

We have shownsFig. 8d that the drag exerted on the
square obstacle does not significantly depend on its orienta-
tion. The same result holds in low Reynolds hydrodynamics,
merely owing to the linearity of the Stokes equation and to
the high symmetry of the squaref42g. On the other hand, the
drag does depend on the orientation at high Reynolds num-
ber f32g. We thus think this result provides a good test to
validate possible constitutive equations for foams; it tends to
prove the relevance of linear models, at least in the studied
range of control parameters.

2. Size, shape, and boundary conditions

We have chosen to compare the various obstacles through
an effective drag and a ratio between the viscous coefficient
and the yield drag. We think this is relevant since this way of
comparison involves both the elastic and the viscous contri-
bution to the drag, which have comparable weight in the
studied range of flow ratesFig. 9d. Furthermore, this pro-
vides a way to compare obstacles of different shapes.

Figure 11 shows that the dimensional drag coefficient
does not vary much with the obstacle, except for the airfoil.
Though the cross length is not the unique characteristic
length of the obstacles, this shows that the drag is roughly
proportional to the size of the obstacle. This is not an obvi-
ous result: considering the flow of a Newtonian fluid around
a cylinder in the same geometry as ours, and defining like
before a drag coefficient as the ratio between the drags2d and
the radius of the cylinder, it can be shown that this drag
coefficient would increase significantly with the radius. The
complete formulas2d, not shown for the sake of simplicity
ssee Ref.f27gd, yields a drag coefficient 2.6 times higher for
a cylinder of diameter 48 mm than for the one of diameter
30 mm, whereas the values of Table I show that the drag
coefficients for these two cylinders are comparable in our
experiments. This proves again the significance of elastic
effects in our case and agrees qualitatively with the results of
Mitsoulis f34g who showed that for a Bingham plastic, the
effect of channel walls remains weak, even when the diam-
eter of the cylinder equals the half of the channel width, as
far as elastic effects are dominant.

The ratio between viscous coefficient and yield drag,
whose values are tabulated in Table I, does not change sig-
nificantly between the cylinders, the cogwheel, and the
square, whereas it increases much for the airfoil. This is
clearly a signature of shape: one intuitively expects elastic
effects to act on the cross section orthogonal to the flow to
pull the obstacle streamwise, whereas the viscous contribu-
tion to the drag arises from the friction in the lubrication
films between the obstacle and bubbles slipping along it.
Hence, one expects the viscous contribution to increase with

the cross section parallel to the flow. This explains why the
viscous coefficient/yield drag ratio is higher for the airfoil,
owing to the great difference between the two considered
sections for this profile. Furthermore, the decrease of the
drag coefficient for the airfoil, as well as the variation of this
coefficient with the orientation of the square, shows that the
shape of the obstacles influences the results through stream-
lining: for a given size, drag is reduced on an obstacle whose
shape is well adapted to the flow, like in aerodynamics.

The values displayed in Table I show that the boundary
conditions do not affect much the drag: the dimensional drag
coefficient is close to those for the two cylinders, whereas
the ratio between viscous coefficient and yield drag is
slightly lower. Actually, the cogwheel and trapped bubbles
form a closed system during the experiment: no rearrange-
ment of the trapped bubbles occurs after all the cogs have
been filled with bubbles. So this system behaves as an effec-
tive obstacle, but with an external boundary constituted of
bubble edges, instead of a solid boundary. This could explain
the slight decrease of the viscous coefficient/yield drag ratio:
at low velocity, the foam feels the presence of the effective
obstacle, but at high velocity, the friction between this effec-
tive obstacle and the surrounding flowing bubbles is lower
than the friction between a solid obstacle and its neighboring
flowing bubbles. To be more quantitative, it would be inter-
esting to study the influence of interfacial rheology on this
friction. Anyway, the measurements show that the influence
of boundary conditions is not dramatic, probably because it
does not change much the features of the flow beyond the
first layer of bubbles.

V. CONCLUSIONS

This work provides the first detailed and systematic mea-
surements of the force exerted by a 2D flowing foam on an
obstacle as a function of various control parameters: flow
rate, bulk viscosity, bubble volume, obstacle orientation, and
size, shape, and boundary conditions. All the data show two
contributions to the drag: a yield drag at vanishing flow rate
and a flow rate-dependent contribution. We have shown that
the yield drag is independent of the bulk viscosity, decreases
with bubble volume, and linearly increases with the obstacle
size. Moreover, both elastic stresses and pressure contribute
significantly to the yield drag. Fitting the flow rate-dependant
contribution by a linear law, we have shown that the slope
sor viscous coefficientd increases with the bulk viscosity as a
power law with an exponent around 3/4; moreover, the vis-
cous coefficient globally decreases with the bubble volume
and linearly increases with the obstacle size. Furthermore,
we have studied the influence of the obstacle shape and
showed the existence of streamlining effects in foams, and
we pointed out that the effect of boundary conditions on the
obstacle is not striking.

This work opens many perspectives. Other control param-
eters remain to be studied, like bubble area polydispersity
and rheological properties of the surfactants. The effects of
those parameters on the drag could help to study their influ-
ence on foam rheology. Pressure drop measurements, allow-
ing one to study dissipation in foamsf35g, are in progress
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f43g. Now, a local analysis of the stresses, deformationsf44g,
and velocity fields is required to provide a more detailed
comprehension of the foam rheology. Such a study is also in
progress. The comparison between this local analysis and the
global properties of the foam, such as our drag measure-
ments, could provide a way to propose and test constitutive
equations for the mechanics of foams.
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APPENDIX: DERIVATION OF FORMULA (1)

We consider a fiber of vertical lengthL that experiences a
horizontal forceF sFig. 13d. All lengths are adimensionalized
by ÎIE /2F, whereI =pD4/64 is the inertia momentsD being
the fiber diameterd and E the Young modulus. The position
along the fiber is expressed as a function of the anglea.
Therefore, the position of the extremity of the fiber is written
in the general casef26g,

L = 2Îsina0,

X =E
0

a0 sina

Îsina0 − sina
da ⇒ X

=E
0

arcsinL2/4 sina

ÎL2/4 − sina
da.

This yields an implicit expression between the force and de-

flection involving elliptic functions, which is not easy to
evaluate.

The fiber can experience large deflectionssup to 12 mm
for a length of 34.8 mmd, so we need a more accurate ex-
pression than the linearized one:X=L3/6. To do that, we
develop the previous expression in power series ofL, which
yields X=L3/6+L7/280+L11/7392+OsL15d. Going back to
dimensionalised lengths and inverting the series yields the
formula s1d linking the force and deflection.

At the maximal deflection, the ratioX/L reaches a value
of 0.345. At such a ratio, formulas1d gives a precision of
0.3% over the force, while the linearized formulaF
=3pED4X/64L3 yields an error of 9%.
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